Lecture IV Quantum Expander Codes Before we can talk about quantum expander codes, we need to define (classical) expander codes. We stert by recalling the definition of expander graphs.

Def: Expander Graph Let G=(V,E) be a greuph on n vertices. We say that the graph is a (E, S) - expander if for all SCV with 1515En $| \{y\} : \exists x \in S \text{ s.t. } (x, y) \in E \{ \} | 7 \{ | S | \}$ That is, every subset S of vertices of size at most En has a neighbourhood of size greater than JSI. 2

Now suppose $G = (\xi A, B 3, E)$
is a bipartite graph where the vertices
of A are a-regular and the
vertices of B are b-regular.
We call such grapphs (a, b) - regular
We say that G is an
(a, b, E, J) - expander it it is
(a, b) - veguler and
$\forall S \subseteq A$ with $ S \leq \epsilon A $
$ \{y: \exists x \in S \ s.t. (x,y) \in E_{3} 2 S S \}$
3

B N(S) Neighborhood $\exists x \in S \text{ s.t. } (x,y) \in E$ N(s)= Zy∈B We are interested in families of graphs of increasing size, where each graph in the formily is an (a, b, E, S)-expander. (4)

Def: Expander coele
Let $G = (\{A, B\}, E\}$ be an
(a,b)-reputer graph with A = n
and $ B = an/6$.
Let l'(the local code) be a linear code
on 6 bits. Let 21,2,-,n3
f(i,j): [an/b]×[b] -> [n]
be a bijective function defined
such that, for each $u_i \in B$
the neighbourhood of Ui,
$N(u_i) = \xi V_{f(i,1)},, V_{f(i,b)} \xi$. (5)

The expander code defined by
G and l'is the linear code
on n bits whose codewards are
the vectors (V1, V2,, Vn) such
that, for i-E [an/b],
$\left(v_{f(i,i)} v_{f(i,2)}, \dots, v_{f(i,b)} \right)$ is a
codeword of C.
Det: relative distance of an [n, h, d] liver code.
$d_r = d/n$

Example

Let G be a (2,7) - regular graph. Denste the A vertices by O and the B vertices by D. Locally, the graph looks like (7)

Hanning Let l be the [7, 4, 3] $H = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$ Code. 2345 7/2 0 5 4 0 The codewords of the expender code defined by G and C must locally be codewords of leg. (1110000) [8]

An example of such a graph is the edge-vertex incidence G graph of a certain hyperbolic tiling

Recall Theorem : Let G be an |A| = n $(a, b, x, \frac{a}{rL})$ - expander and let \mathcal{C} |B| = anbe a linear code on 6 bits with encoding rate \$7 (a-1)/a, and minimum relative distance of That is, the code hers parameters $\begin{bmatrix} b, k^{7} \left(\frac{a-1}{a} \right) b, d = \delta b \end{bmatrix}$ Then the expander code defined by G and E has encoding rate at least ar - (a - 1) and minimum relative distance at least a $\left(\left| \mathcal{O} \right\rangle \right)$

Proof
To find to we count the
unmber of parity checks.
Each vertex in B imposes
6 - rb = b(1 - r) party cheeks.
Assuming all checks are
independent, we have
k = n - an b(1 - r)
= n - an(1 - r) = n(1 - a(1 - r))
= n(ar - (a - 1))

So the encoding rate ar- (a-1). is at least k Now to prove the distance Suppose that I is a codeward of (Hamming) weight Sorn. Let V be the set of bits = 7 in V. As G is (a,b)-regular, thre we all edges leaving the corresponding A vertices in G. (12)

The expansion property implies
that these edges are incident
to more than $\frac{a}{r_6}$ [V]
B vertices in G.
So the set of 1 bits are incident
to more than $\frac{\alpha}{76}$ [V] parity checks.
The average number of tits per B vertex
is less than $a V / \frac{a}{r_b} V $
$= \gamma_b$
The unst be at least one B
vertex that adrieves the average (3)

and therefore we have a B vertex with fever than 06 1 bits incident to it. But the local Lode C hus distance = 86 and so ~ cannot satisfy the checks • • • of the local code at this B vertex and is therefore not a valid codeward of the expander code (14)

Families of graphs exist that satisfy the constraints of the Theorem c so expander codes provide a construction of good LDPC codes w parameters [n, D(n), D(n)]. Theorem: There exist formilies of gLDPC codes with parameters $E[N, \Theta(N), \Theta(TN)]$ Proof: We apply the hypograph product construction to the a family of good expander codes (15)

defined by a family of (a, b) - regular graphs and a local code & with encoding rate r. Let Gi be the ith graph and Hi be the ith parity check matrix. We can choose $H_i \in \mathcal{M}(\mathbb{F}_2)$ mixui such that it is (6, a) - LOPC and full rank (ie kT = 0). The expander code has peremeter $E_{n_i}, (ar-(a-1))n_i, xn_i]$ Consider the cude HGP(Hi, Hi) Applying our previous venilts we conclude (16)

• HGP (1	-(;, H;) (s	(a+6, ma - gLD	ix ξa,63) PC
• H 6 P (H	li, Hi) has	$N = n_i^2$	$+ M_i^2$
• HGP(F	-li, Hi) has	$k = k^2$ $= (\alpha r)$	$-(a-1)ni)^{2}$
• HGP (H	i, Hi) hers	$\mathcal{D} = \mathcal{A}$	= «n; D
Thic t	-amily of	GLDPC	Coeles
is two	wh as 2	vantum	• • • • • • • • • • • • • • • • • • •
expan	ter cudes.		(17)

Expander codes can be decoded
in linear time using a simple
algorithm called FLIP.
Quantum expander codes can
also be decoded in linear time
using a generalisation of FLIP
called small set flip.
Q expander codes were also the
first known family of weles
to enable fault-tolerant 2.
computation w) constant (space) Overhead. [18

References Sipser and Spielman "Expander Codes Beautiful pyper ? Levernier, Tillich, and Zémor "Quantum Expander Codes GrXiv: 1504.00822 $\left(19^{\circ}\right)$