Hypergraph product codes Lecture III Part II In this lecture we will derive the number of encoded qubits, k, and the code distance, d, of a hypergraph product code. Det: transpose code Consider a linear code e e C with parity-check matrix H The transpose code ET is the linear code with parity check matrix HT. (1)

Lemma 1
The number of encoded qubits,
or dimension, of et is
$k^{T} = k - n + m$
where a is the number of physical
qubits in l'and m is the number
of vows in H
Proof
$k^{T} = m - \operatorname{rank}(H^{T})$
= m - rank(H) = m - (n - k)
= m - n + k

Note: if H is full rank, i.e., $n-m=k$ then $k^{T}=0$.
Example : repetition code Tonner graph $H = \begin{bmatrix} 1 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & \cdots & 1 & 1 \end{bmatrix}$ 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0
Transpose code just exchanges variable and check wodes in the Tanner graph.
$H = \begin{bmatrix} 1 & 0 & -0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Det : subgrych produet
Let $G_1 = (\{ \xi V_1, C_1 \}, E_1)$ and
$G_2 = (\xi V_2, C_2 \xi, E_2)$ be two
Tanner graphs.
Define G, & G2 to be the induced
subgraph of Gix Gz with variable
node set V, × Vz and check
use set $C_1 \times V_2 \cup V_1 \times C_2$.
We emphasize $G_1 \otimes G_2 \neq G_1 \times G_2$.
\mathcal{L}

Example	$G_1 = G_2 = 0 - 13 - 0 - 13 - 0$	· · · ·
	°0 0 0	
$G_1 \times G_2$		
Node set		7
$V_1 \times V_2 \cup C_1 \times C_2$		
	\circ \circ -1 \circ -1 -1	5
	Ø□ 0	0
	0 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	
G ₁ & G ₂		
Node set		
$V_{1} \times V_{2}$		
· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	5

Det: product code
Let l, and l2 be two linear
codes w/ parameter [n, , k, , d,] and
[n, k2, d2], respectively.
The product code C, & C2 is
the linear code with n=n,nz
whose codewords may be viewed
as binary matrices of size n, x nz
such that a matrix belongs to l, elz
iff all its columns belong to E,
and all its rows belong to Cz.
(\mathcal{G})

Example $e_1 = e_2$ 3 bit repetition code $H = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ $\left(\begin{array}{cccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \left(\begin{array}{cccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)$ Code words The corresponding Tanner yrigh is exactly G, @Gz, where G, is the Tanner graph of E, C Gz is the Tanner graph of C2 0 <u>−−</u>0 <u>−−</u>0 −− 0 0-0-0-0-0-<u></u>0-0-0 (7)

Lemme 2: The dimension of the product code l' 0 l'2 is k, k2 where ki is the dimension of Ri Roof The codewords of the product code we tensor products utor where utly c vtl2 We can reshape this matrix into a vector yor. Recall that a generator matrix of li is a kixni matrix whose rows form a basis for Ci. (8)

From the ferr of the codewards above we observe that J, & Jz is a generator matrix for l, ol, where Ji is the generator matrix of Ei. JøJz is a kikz × ninz matrix, hence the dimension of the product code is kikz. [] (g)

Lemma 3: Consider the code $HGP(H_1, H_2)$, where $G_1 = (\xi v_1, C, \xi, E_1)$ is the Tamer yrough corresponding to H, and $G_2 = (\xi V_2, C_2, E_2)$ is the Tanner gryph corresponding to H2. Then the Tanner gryph corresponding to H_X is $(G_1^T \otimes G_2)^T$ and the Tanner graph corresponding to H_{z} is $(G_1 \otimes G_2^{\top})^{\top}$. Proof. $G_1^T \otimes G_2$ has node set (0)

$V = C_1 \times V_2$ and check set
$C = C_1 \times C_2 \lor \vee_1 \times \vee_2$
and there is an edge between
$(\varkappa, \mathbf{y}) \in \mathbf{V} \mathbf{e} (\varkappa, \mathbf{y}') \in \mathbf{C}$
if $x = x'$ and $\xi y, y' \xi t E_2$
or $y = y'$ and $\xi_{n,n'} \not\in E_1$.
(GT&GZ) has vertex set
$C = C_1 \times V_2$
$V = V_1 \times V_2 \vee C_1 \times C_2$ and the same edge set.
This is exactly the subgraph of
G, XGZ induced by C, XVZ ie the

the Tamer graph of Hx. The organisat for Hz is analogous. Example H,=Hz=[01] $G_1 = G_2 = 0 - 13 - 0 - 13 - 0$ G. -0-0-GTO GL 0 0 - 0 - 0 - 0 - 0 - 0 12

Lemma 4: The number of encoded qubits of the code HGP(H, Hz) is $k = k_1 k_2 + k_1^T k_2^T$, where $H_{i} \in \mathcal{M}_{m_{i} \times m_{i}}$ is the pcm of linear code e, m parameters [n,,k,,d,] and HzEM (FF2) is the pcm of live ar code le n' parameters [nz, kz, dz]. Proof : $k = n - \operatorname{rank}(H_X) - \operatorname{rank}(H_Z)$ - $(n - \dim(\ell_X)) - (n - \dim(\ell_z))$ これ lineur wele defined by Hx (14)

$k = dim(\ell_x) + dim(\ell_z) - n$
$dim(\ell_{X}) = n_{1}n_{2} + m_{1}m_{2} - m_{1}n_{2}$ Lem 1
$+ \dim (\mathcal{L}_{X}^{T})$
$= n_1 n_2 + m_1 m_2 - m_1 n_2$ Lem 3
$+ dim (\ell_1^T \otimes \ell_2) Lem 2$
$= n_1 n_2 + m_1 m_2 - m_1 n_2 + k_1^T k_2$
$dim (\ell_z) = n_1 n_2 + m_1 m_2 - n_1 m_2 Lem. 1 + dim (\ell_z^T)$
$= n_1 n_2 + m_1 m_2 - n_1 m_2 + k_1 k_2^T$
$k = n_1 n_2 + m_1 m_2 - m_1 n_2 + k_1^T k_2 + n_1 m_2 + m_1 m_2 - n_1 m_2 + k_1 k_2^T$
$-n_{1}n_{2}$ (15)

$k = n_1 n_2 + m_1 m_2 - m_1 n_2 + k_1^T k_2$
$+ m_1 m_2 - n_1 m_2 + k_1 k_2$
= $n_1(n_2 - m_2) - m_1(n_2 - m_2)$
$+m_1m_2$ $+k_1^Tk_2+k_1k_2^T$
$= (n_1 - m_1)(n_2 - m_2)$
$+k_1^Tk_2+k_1k_2^T$
= $(k_1 - k_1^T)(k_2 - k_2^T)$ Lerma 1
$+k_1^Tk_2+k_1k_2^T$
= $k_1 k_2 - k_1 k_2^T - k_1^T k_2 + k_1^T k_2^T$
$+k_1^Tk_2+k_1k_2^T$
$= k_1 k_2 + k_1^T k_2^T$
\mathcal{G}

Lemma 5: The code distance of the code HGP(H,, Hz) $d > \min(d_1, d_2, d_1^T, d_2^T)$, where $H_1 \in \mathcal{M}_{(\overline{H}_2)}$ is the pcm of linear code $m_1 \times m_1$ e, ul parameters [n,,k,,d,] and HzEM (Frz) is the pcm of linear code le n' paremeters [n2, k2, d2]. Rout Consider a Pauli Z-type queator that commutes with the X-type stabilizes of HGP(H,,H2) and has weight $\leq \min(d_1, d_2^T)$ (17)

Such an operator can be represented by a codeward 3. E Cx, where Ex is the lineer code defined by Hx. Let $Supp(z) \leq V_1 \times V_2 \cup C_1 \times C_2$ denote the support of 3. Define $V_{i}^{\prime} := \{ v' \in V_{i} : \exists v \in V_{2}, (v', v) \in \operatorname{Supp}(3) \}$ $C'_{2} := \frac{1}{2} c' + C_{2} : \exists C \in C_{1}, (c', c) + supp (3)$ Let G' be the subgraph of G, of H, induced by V/UC2 and let G' be the subgraph of G2 induced by V, UC2.

Let li and l'é be the linear wde defined by the Tamer graphs Gi a Gi, respectively. Any code word of l' can be extended to a codeward of l, by padding it with zeros. (x, , , , , , , ,) e l' (x, x, ..., x, v, i, o, o, ..., o) e e, We also have $|V'_i| < d_i$ and So $\pi_0 = \kappa_1 =$ $= x_{|V_1'|} = D_{j}$ 1.e. $dim(\ell_i) =$ 0 20

Similarly any codeword of ℓ_2^{T}
can be extended to a codeword
of e_z^T by padeling w/ zeros but
the coelessard here $\operatorname{wt} \in d_z^{T}$ so $\operatorname{dim}(\mathcal{C}_z^{T}) = \mathbf{O}$.
Let H? be the pcm corresponding
$to G_i^2$.
By Lemma 4, the code
$HGP(H'_1, H'_2)$ hers
$k' = k'_{1}k'_{2} + k''_{1}k''_{2} = 0$
$\frac{\tau}{O} \qquad 0$ $d_{int}(\varphi^{i}) \qquad d_{int}(\varphi^{i})$

Denuste by 3' the restriction of to $V_1' \times V_2 \cup C_1 \times C_2'$. 3 Example G' 1 G2 0-13-0 $HGP(H'_{1}, H'_{2})$ G 0-1]-G' = 1 $\Box = 0$ $\Box = 0$ (22)

Denote by $h_{z}(v_{1}, c_{2})$ the row of Hz corresponding to v, EV, & c2 EC2 and similar for $h_{2}^{\prime}(v_{1}^{\prime},c_{2}^{\prime})$ with $v_{1}^{\prime} \in V_{1}^{\prime}$ and $c_{2}^{\prime} \in C_{2}^{\prime}$. Note that as k'= 0 any operator 3' that countes with the X-type stabilizes of HGP(H,', H'2) must be a Z-type stabilizer of $HGP(H'_{1}, H'_{2})$. $3' = \bigoplus h'_{2}(v'_{1}, c'_{2})$ where $(J'_1, C'_2) \neq J$ $T \leq V_1' \times C_2'$ (23)

The set of neighbours of any
$(v_1), c_2' \in V'$ is the same as
in the corresponding $(v_1', c_2') \in V$.
Recall the vertex set of G' is V'U C,
and the vertex set of G2 is V2 UC2',
and $v_1' \in V_1'$, $c_2' \in C_2'$.
=> The vertex set of G1 × G2
is $V_1 \times V_2 \cup C_1 \times C_2'$
All the neighbors of (vi, cz') in
G, × G2 are contained in
$\{v_1, v_2, v_2, v_2, v_3, v_1, v_2, v_2, v_1, v_1, v_2, v_2, v_2, v_1, v_2, v_2, v_1, v_1, v_1, v_2, v_2, v_1, v_1, v_1, v_1, v_1, v_1, v_1, v_1$
is a sublet of the above. (24)

Therefore we also have $3 = \bigoplus_{(v_1^2,c_2^2) \in J} h_2(v_1^2,c_2^2)$ Ìe 3 is a Z-type stabilizer Therefore any Z-type operator that commutes up the X stabilizes w/ weight & mm (d1, d2) unst be a Z-type stabilizor. Running the same orgument w/ X e Z exchanged allows us to conclude that any X-type operator that commutes w) the (25)

Z stabilizes and hus weight $\leq \min(d_1^T, d_2)$ must be an X-type stabilizer Therefere any operator that commutes with all the stabilizers and is not itself a stabilizer has weight? $\min(d_1, d_2, d_1, d_2)$. \Box (26)

One can also show that the code distance of $HGP(H_1, H_2)$ $d \leq \min(d_1, d_2, d_1, d_2^{\top})$ and therefore $d = \min(d_1, d_2, d_1^T, d_2^T)$ (27)

We can therefore conclude that the hypergraph product code HGP(H, H2) has parameters $\begin{bmatrix} n_{1}n_{2}+m_{1}m_{2}, k_{1}k_{2}+k_{1}^{T}k_{2}^{T}, \end{bmatrix}$ $min(d_1, d_2, d_1^T, d_2^T)$] (28)