

Lecture 7 : Quantum Shannon Theory

von Neumann entropy

$$\hat{\rho} \in \mathcal{D}(\mathcal{H})$$

$$S(\hat{\rho}) = -\text{Tr}(\hat{\rho} \log \hat{\rho})$$

Spectral decomp. $\hat{\rho} = \sum_a \lambda_a |\psi_a\rangle\langle\psi_a|$

$$S(\hat{\rho}) = -\sum_a \lambda_a \log \lambda_a$$

$\lambda_a \in [0, 1]$
 $\sum_a \lambda_a = 1$

$$= H(A)$$

where $A = \{a, \rho(a) = \lambda_a\}$

Properties of von Neumann entropy

① $\hat{\rho} = I + X + I \Rightarrow S(\hat{\rho}) = 0$

② Unitary \hat{U}

$$S(\hat{U}\hat{\rho}\hat{U}^+) = S(\hat{\rho})$$

③ $\dim \mathcal{H} = d$

$S(\hat{\rho}) \leq \log d$, with
equality for max. mixed state

④ $S(\hat{\rho}_A) = S(\hat{\rho}_B)$

for $\hat{\rho}_A = \text{Tr}_B (I + X + I)$

$\hat{\rho}_B = \text{Tr}_A (I + X + I)$

Now

⑤ Subadditivity

$$S(\hat{\rho}_{AB}) \leq S(\hat{\rho}_A) + S(\hat{\rho}_B)$$

Equality iff $\hat{\rho}_{AB} = \hat{\rho}_A \otimes \hat{\rho}_B$

⑥ Q. mutual information

$$I(\hat{\rho}_A; \hat{\rho}_B) = S(\hat{\rho}_A) + S(\hat{\rho}_B) - S(\hat{\rho}_{AB})$$

$$I(\hat{\rho}_A; \hat{\rho}_B) = 0 \text{ for}$$

$$\hat{\rho}_{AB} = \hat{\rho}_A \otimes \hat{\rho}_B$$

⑦ Triangle inequality

$$S(\hat{\rho}_{AB}) \geq |S(\hat{\rho}_A) - S(\hat{\rho}_B)|$$

Proof of ⑦

Consider $|+\rangle_{ABC}$ s.t.

$$\hat{\rho}_{AB} = \text{Tr}_C (|+\rangle_{ABC} \langle +|)$$

$$S(\hat{\rho}_A) = S(\hat{\rho}_{BC})$$

$$\leq S(\hat{\rho}_B) + S(\hat{\rho}_C) \quad ⑤$$

$$= S(\hat{\rho}_B) + S(\hat{\rho}_{AB})$$

$$S(\hat{\rho}_A) - S(\hat{\rho}_B) \leq S(\hat{\rho}_{AB})$$

Exchange A & B for the
other way

cf. Shannon entropy

$$H(XY) \geq H(X), H(Y)$$

For quantum states information can be encoded in the correlations between subsystems.

$$\text{e.g. } |\psi\rangle_{AB} = \frac{1}{\sqrt{2}} (|00\rangle_{AB} + |11\rangle_{AB})$$

$$\hat{P}_A = \hat{P}_B = \frac{1}{2} (|0\rangle\langle 0| + |1\rangle\langle 1|)$$

$$S(|\psi\rangle_{AB}) = 0$$

$$S(\hat{P}_A) = S(\hat{P}_B) = \frac{1}{2}$$

can also define the conditioned entropy

$$S(\hat{P}_A | \hat{P}_B) = S(\hat{P}_{AB}) - S(\hat{P}_B)$$

$$H(X|Y) = H(XY) - H(Y) \geq 0$$

$$\text{For the state above } S(\hat{P}_A | \hat{P}_B) = -\frac{1}{2} !$$

Schumacher Compression

Consider a density operator

$$\hat{\rho} = \sum_x p(x) |t(x)\rangle \langle t(x)|$$

This is the analogue of a classical random variable $X = \{x, p(x)\}$.

Suppose we sample from the ensemble $\hat{\rho}$ n times.

The resulting density matrix

$$\text{is } \hat{\rho}^{\otimes n} = \hat{\rho} \otimes \dots \otimes \hat{\rho}$$

Can we compress this to a state on fewer than n subsystems?

Consider the spectral decomposition

$$\text{of } \hat{\rho} = \sum_a \lambda_a |\psi_a\rangle\langle\psi_a|$$

\sim orthonormal

In this basis

$$\hat{\rho}^{\otimes n} = \lambda_a^n (|\psi_a\rangle\langle\psi_a|)^{\otimes n} + \dots$$

Define the δ -typical subspace

Λ as the subspace of \mathcal{H} spanned

by eigenvectors of $\hat{\rho}^{\otimes n}$ w/

eigenvalues μ satisfying

$$2^{-n(S(\hat{\rho}) - \delta)} \geq \mu \geq 2^{-n(S(\hat{\rho}) + \delta)}$$

As the $|\psi_a\rangle$ are orthogonal

we can model the state $\hat{\rho}^{\otimes n}$ as the classical distribution

X^n where $X = \{a, \lambda_a\}$

We know that for any $\epsilon, \delta > 0$

$\exists N$ s.t. for all $n \geq N$

$$2^{-n(H(x)-\delta)} \leq \underbrace{\lambda_a, \lambda_{a_2}, \dots, \lambda_{a_n}}_{\mu} \leq 2^{-n(H(x)+\delta)}$$

w/ probability $1 - \epsilon$.

We also know that $H(x) = S(\hat{p})$
at least

i.e. w/ probability $1 - \epsilon$, $\hat{p}^{\otimes n}$ lies
in the δ -typical subspace.

Or equivalently

$$\hat{\pi}_{\text{typ}} = \sum_{i \in \Lambda} |i\rangle \langle i|$$

$$\text{Tr}(\hat{\pi}_{\text{typ}} \hat{p}^{\otimes n}) \geq 1 - \epsilon$$

↑ Projector onto δ -typical
subspace

We can bound the dimension of Λ , $\dim(\Lambda) = N_{\text{typ}}$

$$N_{\text{typ}} 2^{-n(S(\hat{p}) + \delta)} \leq 1$$

$$N_{\text{typ}} \leq 2^{n(S(\hat{p}) + \delta)}$$

$$N_{\text{typ}} 2^{-n(S(\hat{p}) - \delta)} \geq 1 - \varepsilon$$

$$N_{\text{typ}} \geq (1 - \varepsilon) 2^{n(S(\hat{p}) - \delta)}$$

$$(1 - \varepsilon) 2^{n(S(\hat{p}) - \delta)} \leq \dim(\Lambda) \leq 2^{n(S(\hat{p}) + \delta)}$$

Our compression strategy is to only encode the δ -typical subspace.

First we make a projective measurement that projects the state onto Λ or $\Lambda^\perp \leftarrow \text{complement}$

$$\hat{\Pi}_{\text{typ}} = \sum_{i \in \Lambda} |i\rangle\langle i|$$

$$\hat{\Pi}_{\text{typ}}^\perp = \hat{I} - \hat{\Pi}_{\text{typ}}$$

w) probability $1-\varepsilon$ we obtain

$$\hat{\rho}' = \frac{\hat{\Pi}_{\text{typ}} \hat{\rho}^{\otimes n} \hat{\Pi}_{\text{typ}}}{1-\varepsilon}$$

which is entirely supported on Λ .

w/ probability ϵ the compression fails.

We can then compress

$$\hat{U} \hat{\rho}' \hat{U}^+$$

$$= \hat{\rho}'_A \otimes \underset{B}{\mathbb{1} \times \mathbb{1}}$$

where $\dim(A) = \dim(\Lambda)$

and $\dim(B) = \dim(\Lambda^\perp)$

$$= \dim(\mathbb{R}^{\otimes n}) - \dim(\Lambda)$$

Now suppose we want to
undo the compression

We can describe the state after decompression as

$$(1-\varepsilon) \hat{\rho}' + \varepsilon \hat{\rho}_\varepsilon = \hat{\rho}^{\text{out}}$$
$$= \hat{\Pi}_{\text{typ}} \hat{\rho}^{\otimes n} \hat{\Pi}_{\text{typ}} + \varepsilon \hat{\rho}_\varepsilon$$

Let us compute the fidelity of this w/ the initial state

$$|\psi(\underline{x})\rangle = |\psi(x_1)\rangle \otimes \dots \otimes |\psi(x_n)\rangle$$

$$\hat{\rho}^{\otimes n} = \sum_{\underline{x}} p(\underline{x}) |\psi(\underline{x})\rangle \langle \psi(\underline{x})|$$

For a given message \underline{x} the fidelity is

$$F(\underline{x}) = \left| \langle \psi(\underline{x}) | \hat{\Pi}_{typ} | \psi(\underline{x}) \rangle \right|^2$$

$$+ \varepsilon \underbrace{\langle \psi(\underline{x}) | \hat{P}_{junk} | \psi(\underline{x}) \rangle}_{\geq 0}$$

$$\geq \left| \langle \psi(\underline{x}) | \hat{\Pi}_{typ} | \psi(\underline{x}) \rangle \right|^2$$

The average fidelity is

$$F = \sum_{\underline{x}} p(\underline{x}) F(\underline{x})$$

$$\geq \sum_{\underline{x}} p(\underline{x}) \left| \langle \psi(\underline{x}) | \hat{\Pi}_{typ} | \psi(\underline{x}) \rangle \right|^2$$

Note that for $z \in \mathbb{R}$

$$(z-1)^2 \geq 0 \quad z^2 \geq 2z-1$$

$$F \geq \sum_{\underline{x}} p(\underline{x}) \left[2 \langle \hat{\rho}(\underline{x}) | \hat{\Pi}_{typ} | \hat{\rho}(\underline{x}) \rangle - 1 \right]$$

$$= 2 \sum_{\underline{x}} p(\underline{x}) \langle \hat{\rho}(\underline{x}) | \hat{\Pi}_{typ} | \hat{\rho}(\underline{x}) \rangle - \sum_{\underline{x}} \underbrace{p(\underline{x})}_1$$

$$= 2 \text{Tr}(\hat{\rho}^{\otimes n} \hat{\Pi}_{typ}) - 1$$

$$\geq 2(1-\varepsilon) - 1 = 1 - 2\varepsilon$$

\Rightarrow We can compress the state to a state on $n S(\hat{\rho})$ subsystems with negligible loss in fidelity (ε can be arbitrarily close to 0).

Shannon & Schumacher

compression seem very similar
but there is a difference.

Consider again

$$\hat{p} = \sum_x p(x) \underbrace{I\!\!I(x) X I\!\!I(x)}$$

$$X = \{x, p(x)\}$$

The Holevo bound gives

$$H(X) - \sum_x p(x) \overbrace{S(I\!\!I(x) X I\!\!I(x))}^{\text{C}} \leq S(\hat{p})$$

equality when

$$H(X) \leq S(\hat{p})$$

$$(I\!\!I(x) | I\!\!I(y))$$

$$= \delta_{xy}$$

Now consider n samples drawn from the ensemble $\hat{\rho}$.

use Shannon to

We can ¹ compress the classical description X^n using

$$H(X) + o(1) \text{ bits per letter.}$$

But we can use Schumacher compression to compress the state using $S(\hat{\rho}) + o(1)$ qubits per letter.

As $S(\hat{\rho}) \geq H(X)$ quantum compression is more efficient.

Capacities of quantum channels

This is a much harder problem than in the classical case.

We still don't know the capacity of the depolarizing channel,
 $D(\hat{p}) = (1-p)\hat{p} + p\frac{\hat{I}}{d}$, for example.

We don't have time to go into this topic in depth, but here is one counter-intuitive result.

$$A - \boxed{U} - B$$

can be written as

$$\begin{array}{c}
 \text{Reference} \\
 \text{R} \xrightarrow{\quad} \\
 \vdots \\
 A - \boxed{U} - B \\
 \text{Environment} \xleftarrow{\quad}
 \end{array}$$

\curvearrowleft Shivespring dilation

$|+\rangle_{RA}$ any state such that

$$\text{Tr}_R(|+\rangle_{RA} \langle +|) = \hat{\rho}_A.$$

$$I_c(R;B) = \frac{1}{2} (I(R;B) - I(R;E))$$

$$\begin{aligned}
 -S(R|B) &= S(B) - S(RB) & \text{RBE is} \\
 &= S(B) - S(E) & \text{pure}
 \end{aligned}$$

The quantum analogue of
Shannon's noisy coding
theorem is

$$Q(N^{A \rightarrow B})$$

$$= \lim_{n \rightarrow \infty} \max_{A^n} \frac{1}{n} I_c(R^n \rightarrow B^n)$$

C input distribution

where I_c is the coherent
information and is defined

$$I_c(R \rightarrow B) = \frac{1}{2} (I(R; B) - I(R; E))$$

Note that the input state $\hat{\rho}_{A^n}$ can be entangled.

In general the coherent information can be superadditive and so $\max_A I_c(R)B$ is only a lower bound on the capacity.

Superactivation of quantum channels

\exists q. channels N_1, N_2 s.t.

$$Q(N_1) = Q(N_2) = 0$$

\nwarrow quantum capacity

$$Q(N_1 \otimes N_2) > 0$$

So for a given channel we

cannot bound the capacity using
a single use of the channel as
we could in the classical case.

We instead may need to
consider arbitrarily large

tensor power of the channel!