
Lecture6 : ShannonTheory

Claude Shamou (1948)

1
.
How much can a message

be compressed ?
-

1. At what rate can our
-

communicate reliably over
-

a noisy channel ?

We will model the message

as a random variable
-

X: =(x , p(x) 3
letter ↑

probability alphabet

x + 50 ,
1

, ... , d - 134



p(x) - [0 , 1]

= p(a) = 1

#lettermessage

22
, 212 --- xn

has probability plai)
if it is independently and
-

caticallydistributed Siid).

We can represent this as

a random variable

x" = Sz
, p(z)3

↑ &
(a

,, , ...,
2.) p(a) place ... plea



Consider a longmessage
i . e . n> 1.

Can we compress such a message ?-

Consider a↳Mary alphabet x - 50, 13

p(0) = 1 - p pt[0, 1]

p(1) = p

Law of large mubes i

Fepicalstrings have n(l-p) O's

and up Is.

# of possible strings

(p)=(s) -p()!
= (nY -p))

Recall Stirling's approximation-

10gn ! = ntogn - n + 0 Stogn)



log(p)
= sog)(us-p)

!

)
= log n ! - log (np) !

- log (n) l-p)) !

~ n hign-n-up log up + up

- n(1 - p)toy(n)1 - p)) + n(X-p)

= n/logh - ployn-plog p

- (X-y) logn - (1 - p) log(l -p))

= n/- plogp-(1-pllog(1 -p()

= nH(p)
where H(p) is the -kinaryentropy



Stirling's approximation is for

the natural logarithm but we

will use log base 2 /convenient

far Ginay alphabet).

Making this chage just scale

the thy by a constant
,
which is

not significant.

The#typical strings is

therefore
2uH(p)

We can represent the typical
messages using only

(p)+ o Gib rather than n



As we will see
,
the probability

that the message is atypical
is negligible in the limit n-> &.

Note that H(p) - [0 , 13

H(p) = 1 far p = / only

So for any distribution other
-

than the unitar distribution,

we can oEmpressthe message

Let's make this more precise

Consider X =Ex, p(a)3 Random
Variable

x+ 20, 1 , ..,
d - 13 (RV)

d-letter alphabet again



#x [f(x)] = Ef(u)p(a)
Expectation value of f(xe)

M[X] = Ey[x] = [2p(x)

Songlaw of large number

For any 9
,
070 JN S . t.

1 - m[X]) d
wi probability at least 1- E

for all n >, N.

PetShannoentrope
ona

=

- [p(a) tognp(a)



Def : a sequence ofn letter

is 5- typical if
-

H (x) - 03 - 1 log - p(a... new)
- H(X) + o

- (H(x) -5) i logz pl--(
Lemma 3 - (H(x1+ )
-

For any
E

,
570 FN s .

t.

all sequences of n > N letter

are i-typical / probability 1-5 .

Root
- Y p(y)

Define RV Y = Seogn(1/p() , plays

Strong law of large numbers IN S . t.

It 3 - n[Y3/p0
~/ probability 1 - & En >, N



u[Y]

= Ey[y]
= =yp(y)
= [logn (

1 / p(x)) p(a)

= Ex[logz (1/p(a))] = H(X)

#log(1/p() - H(X)

↓ log (1/p(a)
- H(x) - o

- log(pi)) - H(X) +c

- logp(x , xz ... xn))H(X) + d



For the lowerfound the

manipulation is analogous. I

This lemma tells us that each

Excaln-letter sequence

2 = (2 , 32 , ...,
en) Ousw/

probability p(z) satisfying-

- n(H(x) +5)
Pmin

= 2

- p(z)

- n(H(X) -5)
< 2 = Pmax

/Multiply o-typical inequality by -1)
and raise to power 2



The number of typical sequence
-

Ntyp (5 ,
0

, n) is bounded

Ntyp Prin & Z p(u) <
typical
2

Ntyp #in = 2n(H(x)+5)

Ntyp Pmax[p(z) > 1-E
typical
x

Nzyp > + (1 - 2) = (1 -2(2u(H(x)
-5)

Pmax

2n (H(x)
+5)

>, Ntyp(5,
0
,n)

> (1 -2)2n(H(x)
- 5)



Therefore we can encode all
-

typical sequences using just
-

n)H(X) +5) fits
,

or equivalently

H(X) + 5 bits per letter .

This will only fail for atypical
-

sequences , which occur
w/ probability

E
. Theeture the success probability-

is 1- E
,

Suppose me try instead to use

only H(X) - o bits per letter.

6'

Probability that we encounter a

typical requence we can encode

is upper bounded by



#ofsequencesweencoa
& lower band

-
on N

typ

=2
5' - vo

= Exponentially small in n

Compression rate
-

tits encoded

R= per letter



Theorem : Source coding (Shannon (
-

Compression rate

R = H(X) + o(1) is achievable

R = H(X)- R(1) is not achievable

Aside : Big O rotation

Intuition

f(u) = 0(g(x))

flal ? > g(2) asymptotically

f(x) = o(g(x)
f(x) < g(2) asymitotically



f(x) = (g(x))

f(z) > g(z) asymptotically

f(x) = w(g(z)

f(x) < g(a) asymtotically

f(x) = 0(g(x))
& f(x) =12 (g(x))
then f(x) = 0 (g(z)

Formally
-

f(x) = 0(g(z))

= Tro a > 0 S .
t.

- m > 20 f(x) > a g(z) etc.



f(x) = 0(1)

VE>07 xo

f(x) ? EX2 7/20

f(x) = (x)

no
,
a)0 S . t.

Vx>, 20 f(x)) a

Note that we did not discuss

how to do the compression , we
-

just argued that it is possible
to achieve a certain compression

rate
. Studying this is a entire

topic unto itself and beyond
the scope of this course.



Ny channel coding

Suppose Alice wants to send

information to Bob over anoisy
communication channel .

What is the maximal communication

rate that she can active ?

manysymmetric channel

p(010) = 1 -

p = p(1)))
a

Bgets A sends

p(0(1) = p = p(1)0)

Alice uses the chamel n times

to send a message to Bob.

She chooses 25 codeward



strings from the possibleIn

strings of length n.

The encodingrate R = A
T

How to ensure successful

transmission ?

Choose codewards whose

Hamming distance from each
-

other is largee.

Hamming distance between be 7

is the number of bits we need

to flip to turn be into 1 .

e . g . x
= 01101

Hamming
= 2

y = 11100 distance



Expected # of Git-flips is up

For a given isput codeward the

output is one of 2hH(p) typical

strings wh high probability.

S S

S S

Choose codewards a such that

each enor sphere O contains

around 2hH(pl and error spheres
-

for different code words are

distinct.



# of codewards 25 = 201

volue it ene 2nH(p)
Sphere

To construct the code we need

24RnH(p)2u

R (1 - H(p) : = <(p)
& chanel

capacity

Is this rate achievable ?

Yes using randomcodes.



Suppose that Z is the unituly
-

random distribution (for a single bit).
-

Sample from Z"a total of

24R times to generate
we

random codewords
.

To send a message , Alice

chooses are of these codewards

and sends it to Bot using the

channela times. To decode
-

Bob draws a Hamming sphereen

with radius Auto around

his received string. If the

sphere contains a unique



codeward he decodes accordinly.

Otherwise he picks one of the

options at random.

A A

A A

For any GO Bob's Hamming
sphere contains Alice's codeword

wI high probability. What
is the probability that it also
contains another codeword ?



# possible strings zw

# strings in Bob's Hamusing
sphere 2n(H(p) +5)

Prob .
that a given string is in Bob's

Hamming sphere

=St+=
n(cp)-

# codewards 2uR

Codewards are uniformly random ,-

so the probability that Bob's

Hamming sphere contains another

codewad is upper founded by



2nay-n(((p)
-d)

= 2
-n(((p) - r - 5)

ChopcnS
small as n-> C .

So for we have shown that

for a random code ,
a

-

donelychosen codeward will

be decoded successfully with

high probability when sent

over the chanel.



2 Impre
Let Nzg = # of codewards

~ / penor >, 2E

N22
Nag <

2nr-1

So if we throw away half-

the codewards the wewre
-

guaranteed to here enor

has than 28 for all remaining
codewards.



New code has rate

R = R -1 - = o()

= > R = C(p) - o(1)

is achievable where

2(p) = 1 - H(p) .

If we pick a sequence of

random codes then we will

acieve this performance

wI high probability. Then
to must exist a

particular sequance of codes



that achieves the desired

performance .

For RV X = Ex
, p(a)3

thee always exists

zi S . +- #[x] > xl

&"S .
t. x" Ex[x]



We now consider two RVs

X & Y that may be

correlated. We can write the
-

joint distribution

Xy = E(x,y) , p(x ,y)3

The minal distribution

X = 3x
, p(z) = [p(x,y)3 .

Suppose we sample from XY

n-times
, giving a message

(2 , z) = (a , 2 ... 2ny , %2 ... Yn)

↑ (2 , z) = p(x,y , ) p(xz ,yz) . - . p(an ,yn)



We say that (2 , y) isjointly
5- typical if-

2
-n(H(X) +5)

- p(z) = 2
-n(H(x) -5)

z
-n(H(y)+w) = p(y) = 2

-n(H(x) - v)

-n(H(XY) -v)
2

-n(H(xy)+5))p(x ,y)p2

Strong law of large nutes

implies for any E
,
50 FN

s . t - FrC
,
N such that Je ,7)

is jointly 5- typical w/ probability

at least 1-E .



Using Bayes's rule we can
-

derive expressions for the conditional

probabilities

p(z(y) =

0
T

= z
- n(H(X(y) + 25)

p(z(z)2
= z
-n(H(X(X) - 25)



where we have introduced the

Auditionalentropy of X given Y.

H (X(y) = H(Xy) - H(Y)

This quantifies the remaining

uncertainty I have about se

once I know y.

If (1 , g) is jointly o-typical

ten # (XIY) + o (1) bits are

needed to specifyi once-

is known (with probability

1 - 2) .



The information aboutI that

1 gain when I kam y is the

-naturalinformation

I (X;Y) = H(X) - H(X(Y)

= H(x) - (H(xy) - H(y))

= H(y) - H(Y(X)

This quantifies how much X

2 Y we correlated.



ychannel coding
General case
-

Alphabet 50, 1
, ...,

d - 13

Channel p(y(x)
But gets& Alice sends

Again, A C B use a random
-

code
.

-

① Choose some distribution

X = Ex
, p(x)3

② Generate a codeward by

sampling from X n times

③ Repeat & ghR times R = k/n



How does Bob decode ?
-

· He gets message I -

· He checks whether a codeword

x exists such that a 17

are jointly typical.

· If is exists & is unique

they he outputs re

· Otherwise he chooses at random.

we now found the probability-

ofa decoding ever penser
.

The input distribution and

the channel determine the joint



distribution XY
.

X = Ex
, p(z)3

Y = & y , p(y)
= [p(a,y)3

p(y(z)p(z)
Bayes

Forn uses of the chanel

we get the distribution XnYn,

as the codewards are randomly

sampled from X.

By thesylaw of large

number , for
2
,
510 & n >, N

a sequence drawn from Xyn



will be jointly o-typical w/

probability I - E .

So wl prot .

I-E Bob's received

vectory will be jointly

O-typicalw/ the codeward x

But as there any other-

codewords that wexaintly
-

5-typical w/ 7 ?-

Let a + x denote another

codeward.

I' is sampled independently
froma

,
so I' is independent

of Y .



p(z ,g) + 2
- 2(H(Xy) -v)

- n(H(xy)-v)

12, [p(z ,y)Njt2
2 , 7

jointly otypical

Wit < 2n(H(xX)
-o

p(y)-2
- u(H(y) -5)

p(y))<2
-n)H(x) -5)

[ plaiy) = [p(a) p(y)
17 17
j:5-typ. j:5-typ.

- n(H(X) -v)zn(H(y) -5)Nit 2

- zu(H(Xy)
- H(X) - H(x) - 35)

= 2n(I(X ;Y)
- 35)



The code has k = nR codewards

so the probability that any
other codward except i is

jointly 5-typical w/ if is

upper founded by

2nR-nJF(X; y)
- 35)

= 2n(R - [(x i y) + 35)
rate
L

Choose R = [ (X ;+) - c - 35

then the probabity of ever is
2 ,7 not it -we x, ..,z

- -

pervo = 3 + (1 -2)2 itw

We can mate this arbitrarily-

to0 as we increase n.



We have actually bonded
-

theverageever probability
zur

2 pee + (1)

= El

We can againnur His

code . Let Nee ,
duute the

-

# I codewards w/ par,2g

zr Nag2s ?
E

Nzq's2R-1
Discard 1 of the codewards

to achieve pinZE' Vi.



The new code has rate

R = R - t

So we can conclude that

R = [(X ; Y) - o() is

achievable.

Wewre free to choose X

-theQuandcapacitis
X

This only depads on the

protabilities p(y(r) that

define the chanel.



So we can achieve any RCC .

&was do better ?

Consider the uniform distribution
-

over codewords
-

Y" = E , p(z) = jnR3
& codeword

H(X ) = - [p() logp()

= nREP() = nR

y = 55 , p(y) = [p(y) pl)3
-

2
11

zur [p



The channel acts on the lettes

of independently so

P(y(i)
= p(y , (, ) -- - p([n(n)

H (yn/X) = Exyn[- log> p(g)

= P(logp(

=
- [plag) logz [p(jii
, F

=

-[pl) logzpill
=-EP(, ) logap(y : (i)



Consider specific i

(,) logp(

-. ),
logz p(j: (i)

=I logzp(ill

xi
, j-
P(z , y)

- P ,i logp
= - H(Yi(Xi)

H(Y-(x2) = [H(Xi) Yi)



Shannonentopisadditia
I (Y" ; Yn) = H(yr) - H(YYY)

↓ [H(Y)- H(Yi(Yi)

= I(; Xi) < nC

I (Yn ; Yr) = I(Xn ; Yn)

= H(X) - H(X+ /YY)
= nR - H(Xn/Y")\nC

If Bob can decode reliably the

oh + (* /yu) = O



The receivedvector determines

the sent codeward.

= R = C + o(t)

things
towl

athe capacity
C = max I(X ; X) is a

X

-gl-letterformula i.e .
it

depends only as a single
use of the channel but

applies toarbitrarily long
messages. We can often

compute the capacity.



② The random codes method

is not efficient. Encoding
-

and decoding require an

exponentially large code book.

Finding efficient codes that

achieve the capacity is highly
non-trivial. For the BSC

this was only achievedM

the 90s
,
250 years after

Shannon's paper .


